Silencing of developmental genes in Hydra.
نویسندگان
چکیده
Numerous developmental control genes have been isolated in a variety of organisms by either homology cloning or system-specific strategies. Functional genetic tests, however, are available for only a few model organisms and particularly are missing in a number of animals that occupy key positions for understanding the evolution of development and gene function. Double-stranded RNA-mediated interference (RNAi) opens a way to perform functional studies in such "nongenetic" organisms. Here we show that RNAi can be used to test the function of developmental genes in the cnidarian Hydra, a classical model for developmental studies. Introduction of double-stranded RNA corresponding to the head-specific gene ks1 caused strong depletion of ks1 transcripts. ks1 loss-of-function polyps exhibited severe defects in head formation, indicating an important role of ks1 in Hydra head development. Our results demonstrate for the first time efficient gene silencing in Hydra. RNAi provides an entry point for a variety of functional studies and a direct approach for analyzing the hierarchy of regulatory genes in Hydra, which until now has not been amenable to loss-of-function genetics.
منابع مشابه
Discovery of genes expressed in Hydra embryogenesis.
Hydra's remarkable capacity to regenerate, to proliferate asexually by budding, and to form a pattern de novo from aggregates allows studying complex cellular and molecular processes typical for embryonic development. The underlying assumption is that patterning in adult hydra tissue relies on factors and genes which are active also during early embryogenesis. Previously, we reported that in Hy...
متن کاملHead regeneration in wild-type hydra requires de novo neurogenesis.
Because head regeneration occurs in nerve-free hydra mutants, neurogenesis was regarded as dispensable for this process. Here, in wild-type hydra, we tested the function of the ParaHox gsx homolog gene, cnox-2, which is a specific marker for bipotent neuronal progenitors, expressed in cycling interstitial cells that give rise to apical neurons and gastric nematoblasts (i.e. sensory mechanorecep...
متن کاملAutophagy and self-preservation: a step ahead from cell plasticity?
Silencing the SPINK-related gene Kazal1 in hydra gland cells induces an excessive autophagy of both gland and digestive cells, leading to animal death. Moreover, during regeneration, autophagosomes are immediately detected in regenerating tips, where Kazal1 expression is lowered. When Kazal1 is completely silenced, hydra no longer survive the amputation stress (Chera S, de Rosa R, Miljkovic-Lic...
متن کاملSugarcane Mosaic Virus-Based Gene Silencing in Nicotiana benthamiana
Background:Potyvirus-based virus-induced gene silencing (VIGS) is used for knocking down the expression of a target gene in numerous plant species. Sugarcane mosaic virus (SCMV) is a monopartite, positive single strand RNA virus. Objectives:pBINTRA6 vector was modified by inserting a gene segment of SCMV in place of Tobacco rattle virus (TRV) genome part 1 (TRV1 or RNA1)...
متن کاملTomato and Tobacco Phytoene Desaturase Gene Silencing by Virus-Induced Gene Silencing (VIGS) Technique
Background and Aims: Virus-Induced Gene Silencing (VIGS) is a virus vector technology that exploits antiviral defense mechanism. By infecting plants with recombinant viruses containing host genes inserted in the viral genome, VIGS achieves the RNA silencing process. The purpose of this study was to investigate the possibility of tomato (Lycopersicon esculentum Mill.) and tobacco (Nicotiana be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 214 1 شماره
صفحات -
تاریخ انتشار 1999